Voltage-dependent block of the cystic fibrosis transmembrane conductance regulator Cl- channel by two closely related arylaminobenzoates

نویسندگان

  • N A McCarty
  • S McDonough
  • B N Cohen
  • J R Riordan
  • N Davidson
  • H A Lester
چکیده

The gene defective in cystic fibrosis encodes a Cl- channel, the cystic fibrosis transmembrane conductance regulator (CFTR). CFTR is blocked by diphenylamine-2-carboxylate (DPC) when applied extracellularly at millimolar concentrations. We studied the block of CFTR expressed in Xenopus oocytes by DPC or by a closely related molecule, flufenamic acid (FFA). Block of whole-cell CFTR currents by bath-applied DPC or by FFA, both at 200 microM, requires several minutes to reach full effect. Blockade is voltage dependent, suggesting open-channel block: currents at positive potentials are not affected but currents at negative potentials are reduced. The binding site for both drugs senses approximately 40% of the electric field across the membrane, measured from the inside. In single-channel recordings from excised patches without blockers, the conductance was 8.0 +/- 0.4 pS in symmetric 150 mM Cl-. A subconductance state, measuring approximately 60% of the main conductance, was often observed. Bursts to the full open state lasting up to tens of seconds were uninterrupted at depolarizing membrane voltages. At hyperpolarizing voltages, bursts were interrupted by brief closures. Either DPC or FFA (50 microM) applied to the cytoplasmic or extracellular face of the channel led to an increase in flicker at Vm = -100 mV and not at Vm = +100 mV, in agreement with whole-cell experiments. DPC induced a higher frequency of flickers from the cytoplasmic side than the extracellular side. FFA produced longer closures than DPC; the FFA closed time was roughly equal (approximately 1.2 ms) at -100 mV with application from either side. In cell-attached patch recordings with DPC or FFA applied to the bath, there was flickery block at Vm = -100 mV, confirming that the drugs permeate through the membrane to reach the binding site. The data are consistent with the presence of a single binding site for both drugs, reached from either end of the channel. Open-channel block by DPC or FFA may offer tools for use with site-directed mutagenesis to describe the permeation pathway.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Arylaminobenzoate block of the cardiac cyclic AMP-dependent chloride current.

The cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channel has been identified in the cardiac muscle of a number of mammalian species, including humans. The goal of this study was to begin quantifying the structural requirements necessary for arylaminobenzoate block of the CFTR channel. The cardiac cAMP-dependent Cl- current (ICl) was measured using the whole-cell arrangement of...

متن کامل

Probing an Open CFTR Pore with Organic Anion Blockers

The cystic fibrosis transmembrane conductance regulator (CFTR) is an ion channel that conducts Cl- current. We explored the CFTR pore by studying voltage-dependent blockade of the channel by two organic anions: glibenclamide and isethionate. To simplify the kinetic analysis, a CFTR mutant, K1250A-CFTR, was used because this mutant channel, once opened, can remain open for minutes. Dose-response...

متن کامل

Multi-Ion Mechanism for Ion Permeation and Block in the Cystic Fibrosis Transmembrane Conductance Regulator Chloride Channel

The mechanism of Cl ion permeation through single cystic fibrosis transmembrane conductance regulator (CFTR) channels was studied using the channel-blocking ion gluconate. High concentrations of intracellular gluconate ions cause a rapid, voltage-dependent block of CFTR Cl channels by binding to a site approximately 40% of the way through the transmembrane electric field. The affinity of glucon...

متن کامل

Voltage-dependent Gating of the Cystic Fibrosis Transmembrane Conductance Regulator Cl− Channel

When excised inside-out membrane patches are bathed in symmetrical Cl--rich solutions, the current-voltage (I-V) relationship of macroscopic cystic fibrosis transmembrane conductance regulator (CFTR) Cl- currents inwardly rectifies at large positive voltages. To investigate the mechanism of inward rectification, we studied CFTR Cl- channels in excised inside-out membrane patches from cells expr...

متن کامل

Regulation of CFTR chloride channel trafficking by Nedd4-2: role of SGK1

Introduction: The cystic fibrosis transmembrane conductance regulator (CFTR) chloride (Cl−) channel is an essential component of epithelial Cl− transport systems in many organs. CFTR is mainly expressed in the lung and other tissues, such as testis, duodenum, trachea and kidney. The ubiquitin ligase neural precursor cells expressed developmentally down-regulated protein 4-2 (Nedd4-2...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of General Physiology

دوره 102  شماره 

صفحات  -

تاریخ انتشار 1993